## 4. Belfas $\dagger$

| I can place numbers in order up to 20 as an unbroken chain, starting from 1. $\begin{aligned} & 1,2,3,4,5,6,78,9,10,11,12,13,14 \\ & 15,16,17,18,19,20 . \end{aligned}$ | I can place numbers in order up to 20 as an unbroken chain starting from any number. $\begin{aligned} & \text { e.g } 4,5,6,7,8,9,10,11,12,13,14 \\ & 15,16,17,18,19,20 \end{aligned}$ <br> or $11,12,13,14,15,16,17,18,19$, 20. |
| :---: | :---: |
| I can count back from 20 to 1. $\begin{aligned} & 20,19,18,17,16,15,14,13,12,11,10 \\ & 9,8,7,6,5,4,3,2,1 . \end{aligned}$ | I can say one more than any number between 0-20. <br> e.g 1 more than 7 is 8 , 1 more than 14 is 15 . |
| I can say 1 less than any number between 0-20. <br> e.g 1 less than 17 is 16 , 1 less than 3 is 2. | I can count in multiples of two. $2,4,6,8,10,12,14,16,18,20 .$ |

## 5. Dublin

| I can count up to 50. <br> $0,1,2,3,4,5,6,7,8,9,10,11,12,13$, $14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35$, $36,37,38,39,40,41,42,43,44,45,46$, 47, 48, 49, 50. | I can count back from 50. <br> $50,49,48,47,46,45,44,43,42,4,40$, <br> $39,38,37,36,35,34,33,32,31,30$, <br> $29,28,27,26,25,24,23,22,21,20$, <br> $19,18,17,16,15,14,13,12,11,10,9$, <br> $8,7,6,5,4,3,2,1,0$. |
| :---: | :---: |
| I can count to 100. <br> $0,1,2,3,4,5,6,7,8,9,10$, <br> $11,12,13,14,15,16,17,18,19,20$, <br> 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, <br> $31,32,33,34,35,36,37,38,39,40$, <br> $41,42,43,44,45,46,47,48,49,50$, <br> $51,52,53,54,55,56,57,58,59,60$, <br> $61,62,63,64,65,66,67,68,69,70$, <br> $71,72,73,74,75,76,77,78,79,80$, <br> $81,82,83,84,85,86,87,88,89,90$, <br> $91,92,93,94,95,96,97,98,99,100$. | I can count in multiples of 10 . $\begin{aligned} & 0,10,20,30,40,50,60,70,80,90, \\ & 100 \end{aligned}$ |
| I can count across 100, forward and backwards. $\begin{aligned} & \text { e.g 96, 97, 98, 99, 100, 101, 102, 103, } \\ & 104,105,106,107,108,109,110 . \end{aligned}$ <br> Or 107, 106, 105, 104, 103, 102, 101, $100,99,98,97,96,95,94,93,92,91,90 .$ | I can count in multiples of 5 . $0,5,10,15,20,25,30,35,40,45,50 .$ |


| 6. Lisoon |  |
| :---: | :---: |
| I can say 1 more and 1 less than any 2-digit number. <br> e.g 1 more than 34 is 35 <br> 1 less than 61 is 60 <br> 1 more than 89 is 90 <br> 1 less than 50 is 49. | I know by heart number bonds to 10. $\begin{array}{ll} 10+0=10 & 0+10=10 \\ 9+1=10 & 1+9=10 \\ 8+2=10 & 2+8=10 \\ 7+3=10 & 3+7=10 \\ 6+4=10 & 4+6=10 \\ 5+5=10 & \end{array}$ |
| I know by heart number bonds that total 20. $\begin{aligned} & 20+0=20,19+1=20,18+2=20,17+3=20, \\ & 16+4=20,15+5=20,14+6=20,13+7=20, \\ & 12+8=20,11+9=20,10+10=20,9+11=20, \\ & 8+12=20,7+13=20,6+14=20,5+15=20, \\ & 4+16=20,3+17=20,2+18=20,1+19=20, \\ & 0+20=20 \end{aligned}$ | I can derive subtraction facts within 20. $\begin{aligned} & \text { e.g } 16-4=12,20-15=5,16-9=7,10- \\ & 7=3,19-6=13 \end{aligned}$ |
| I can write numbers to 100 in numerals. <br> $0,1,2,3,4,5,6,7,8,9,10,11,12,13$, $14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35$, $36,37,38,39,40,41,42,43,44,45,46$, $47,48,49,50,51,52,53,54,55,56,57$, $58,59,60,61,62,63,64,65,66,67,68$, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, $80,81,82,83,84,85,86,87,88,89,90$, $91,92,93,94,95,96,97,98,99,100$. | I can count back from 100. $\begin{aligned} & 100,99,98,97,96,95,94,93,92,91, \\ & 90,89,88,87,86,85,84,83,82,81, \\ & 80,79,78,77,76,75,74,73,72,71, \\ & 70,69,68,67,66,65,64,63,62,61, \\ & 60,59,58,57,56,55,54,53,52,51, \\ & 50,49,48,47,46,45,44,43,42,41, \\ & 40,39,38,37,36,35,34,33,32,31, \\ & 30,29,28,27,26,25,24,23,22,21, \\ & 20,19,18,17,16,15,14,13,12,11, \\ & 10,9,8,7,6,5,4,3,2,1,0 . \end{aligned}$ |

