12a. Blue Metro

I can count in 10 s from any number forward or backwards. $\begin{aligned} & \text { eg } 54,64,74,84,94,104 \\ & \text { eg } 77,67,57,47,37,27,17,7 \end{aligned}$	I know by heart all number bonds of multiples of 10 up to 100 . $\begin{aligned} & 0+100=100 \\ & 10+90=100 \\ & 20+80=100 \\ & 30+70=100 \\ & 40+60=100 \\ & 50+50=100 \\ & 60+40=100 \\ & 70+30=100 \\ & 80+20=100 \\ & 90+10=100 \\ & 100+0=100 \end{aligned}$
I can recognize any multiple of 2,5 or 10. Multiples of 2: 2, 4, 6, 8, 10, 12, 14, 16, $18,20,22,24,26,28,30,32,34,36,38$, $40,42,44,46,48,50,52,54,56,58,60$, $62,64,66,68,70,72,74,76,78,80,82$, 84, 86, 88, 90, 92, 94, 96, 98, 100.... Multiples of 5: $5,10,15,20,25,30,35$, $40,45,50,55,60,65,70,75,80,85,90$, 95, 100..... Multiples of 10: $10,20,30,40,50,60$, 70, 80, 90, 100.....	I can find 1,10 or 100 more or less from any 3-digit number. e.g. 1more than 234 is 235 1 less than 151 is 150 10 more than 436 is 446 10 less than 612 is 602 100 more than 520 is 620 100 less than 780 is 680

13. Prague

14. Warsaw

$\begin{aligned} & 1 \mathrm{CO} \\ & \text { in } \mathrm{n} \end{aligned}$	$\begin{aligned} & \text { ר cour } \\ & \text { ultiple: } \end{aligned}$	rwards and backwards 9.	I know by heart all multiplication			
0	108	All the digits in the	$1 \times 9=9$			
	99		$2 \times 9=18$			
	90	product (answer) for the 9 times table will	$3 \times 9=27$		When the sum of the number's	
	81		$4 \times 9=36$			
	72	add up to 9. For	$5 \times 9=45$		digits is divisible	
	63	example:	$6 \times 9=54$		by 9. For	
	54	$\begin{aligned} & 9 \times 2=18 . \quad 1+8=9 ; \\ & 5 \times 9=45 . \quad 4+5=9 . \end{aligned}$	$7 \times 9=63$		example 81 is	
	45		$8 \times 9=72$		$8+1=9$ so is in the	
	36		$9 \times 9=81$		9 times table.	
	27		$10 \times 9=90$			
90	18		$11 \times 9=99$			
	9		$12 \times 9=108$			
1080						
I know by heart all division facts for 9			I can count forwards and			
			backwards in multiples of 7 .			
$108 \div 9=12$						
$99 \div$	$9=11$					
$90 \div$	$9=10$			77		
$81 \div$	= 9			70		
$72 \div$	= 8			63		
$63 \div$	$9=7$		2856			
$54 \div$	= 6		$35 \quad 59$			
$45 \div$	$9=5$		$42 \quad 42$			
$36 \div$	= 4		4935			
$27 \div$	= 3		$56 \quad 28$			
$18 \div$	= 2		$63 \quad 21$			
$9 \div 9=1$			$70 \quad 14$			
$0 \div 9=0$			$77 \quad 7$			
			840			
I know by heart all multiplication facts for 7 up to 7×12.			I know by heart all division facts for 7 up to 84 .			
$1 \times 7=7$			$84 \div 7=12$			
$2 \times 7=14$			$77 \div 7=11$			
$3 \times 7=21$			$70 \div 7=10$			
$4 \times 7=28$			$63 \div 7=9$			
$5 \times 7=35$			$56 \div 7=8$			
$6 \times 7=42$			$56 \div 7=8$$49 \div 7=7$			
$7 \times 7=49$			$42 \div 7=6$			
$8 \times 7=56$			$35 \div 7=5$			
$9 \times 7=63$			$35 \div 7=5$$27 \div 7=4$			
$10 \times 7=70$			$21 \div 7=3$			
$11 \times 7=77$			$14 \div 7=2$			
$12 \times 7=84$			$7 \div 7=1$			

15. Amsterdam

I can count forwards and backwards in multiples of 11 .	I know by heart all multiplication facts for 11 up to 11×12.
	$0 \times 11=0 \quad 11 \times 0=0$
$0 \quad 132$	$1 \times 11=11 \quad 11 \times 1=11$
$11 \quad 121$	$2 \times 11=22 \quad 11 \times 2=22$
$22 \quad 110$	$3 \times 11=33 \quad 11 \times 3=33$
3399	$4 \times 11=44 \quad 11 \times 4=44$
4488	$5 \times 11=55 \quad 11 \times 5=55$
$55 \quad 77$	$6 \times 11=66 \quad 11 \times 6=66$
$66 \quad 66$	$7 \times 11=77 \quad 11 \times 7=77$
7755	$8 \times 11=88 \quad 11 \times 8=88$
8844	$9 \times 11=99 \quad 11 \times 9=99$
9933	$10 \times 11=110 \quad 11 \times 10=110$
11022	$11 \times 11=121 \quad 11 \times 11=121$
12111	$12 \times 11=132 \quad 11 \times 12=132$
1320	
I know by heart all division facts for 11 up to 132 .	I can count forwards and backwards in multiples of 12 to 12×12.
$132 \div 11=12$	
$121 \div 11=11$	0144
$110 \div 11=10$	$12 \quad 132$
$99 \div 11=9$	24120
$88 \div 11=8$	36108
$77 \div 11=7$	4896
$66 \div 11=6$	$60 \quad 84$
$55 \div 11=5$	$72 \quad 72$
$44 \div 11=4$	8460
$33 \div 11=3$	9648
$22 \div 11=2$	10836
$11 \div 11=1$	12024
$0 \div 11=0$	13212
	1440
I know by heart all division facts for 12 to 144.	
$144 \div 12=12$	
$132 \div 12=11$	
$120 \div 12=10$	
$108 \div 12=9$	
$96 \div 12=8$	
$84 \div 12=7$	
$72 \div 12=6$	
$60 \div 12=5$	
$48 \div 12=4$	
$36 \div 12=3$	
$24 \div 12=2$	
$12 \div 12=1$	

16. Copenhagen

I can recall all multiplication and division facts for all multiplication tables up to 12×12 e.g.
$0 \times 12=0$
$1 \times 12=12$
$2 \times 12=24$
$3 \times 12=36$
$4 \times 12=48$
$5 \times 12=60$
$6 \times 12=72$
$7 \times 12=84$
$8 \times 12=96$
$9 \times 12=108$
$10 \times 12=120$
$11 \times 12=132$
$12 \times 12=144$
$144 \div 12=12$
$132 \div 12=11$
$120 \div 12=10$
$108 \div 12=9$
$96 \div 12=8$
$84 \div 12=7$
$72 \div 12=6$
$60 \div 12=5$
$48 \div 12=4$
$36 \div 12=3$
$24 \div 12=2$
$12 \div 12=1$
$0 \div 12=0$

I can multiply and divide whole
numbers and those involving decimals by 10 or 100 and explain the effect.
Use a place value grid.
Multiply by:
$10 \rightarrow$ the whole number moves 1
column to the left, for example 10 x
$1.63=16.3$
100 the whole number moves 2
columns to the left, for example 100 x $1.63=163$

I can multiply 3 single digit numbers. The first two should be done mentally but multiplying by the third might need jottings.
$3 \times 5 \times 7=105$
Don't forget that multiplication can be done in any order, so $5 \times 7=35$ $35 \times 3=$
$[3 \times 30=90,3 \times 5=15]$

I can identify all factor pairs of any number up to 100.

A factor is a number that will go into another number without leaving a remainder. 2 is a factor of 10 because it goes in exactly 5 times.

3 is a factor of 60 because it goes into 60 without leaving a remainder.

I can round any number to the nearest 10,100 or 1,000.

The rule is the same no matter which digits we are talking about.
*If the digit after the one you are rounding is $0,1,2,3$ or 4 then the digit you are rounding stays the same. (E.g. 5639 rounded to the nearest 100 is 5600)
*If the digit after the one you are rounding is $5,6,7,8$ or 9 then the digit you are rounding goes up by 1. (E.g. 5639 rounded to the nearest 1000 is 6000)

18. Stockholm

I can double any 2-digit number	
$11 * 22$	
$12 * 24$	When doubling
$13 * 26$	just remember
$14 * 28$	place value: the
$15 * 30$	value of 7 in 7 i is
$16 * 32$	70 (140) and the
$17 * 34$	value of the 2 is 2
$18 * 36$	(4) so double 72
$19 * 38$	is 144
$20 * 40$	

I can double any number with up to 1 decimal place.

I can half any 2-digit number.

I can half any number with up to 1 decimal place.

4.4	8.8	6.4	12.8
8.8	17.6	10.4	20.8
12.4	24.8	14.6	29.2
16.2	32.4	4.8	9.6

Remember place value and split the number up if it helps. For example 8.8: double 8 is 16 ; double 0.8 is 1.6 so double 8.8 is 17.6 when you add both parts together.

4.4	2.2	6.4	3.2
8.8	4.4	10.4	5.2
12.4	6.2	14.6	7.3
16.2	8.1	4.8	2.4

Remember place value and split the number up if it helps. For example 8.8: half 8 is 4 ; half 0.8 is 0.4 so half 8.8 is 4.4 when you add both parts together.

I can count forward and backwards in steps of powers of 10 for any given number up to 1,000,000.

Any power of 10 means 10 or $10^{2}(10 \times 10=100)$, $\left.10^{3}(10 \times 10 \times 10)=1,000\right)$ etc. For example counting forwards and backwards in
1,000,000 (106)
1,000,000,
2,000,000
3,000,000
4,000,000 and so on.

I can multiply and divide whole numbers and those involving decimals by 10,100 and 1,000 and explain the effect.
Use place value grid!!!
Dividing by 10 - whole number moves one column to the right (smaller number); by 100 - the whole number 2 columns to right; by 1,000 move by 3 columns. Multiplying by 10 - whole number moves 1 column to the left (bigger); by 100 two columns to the left; 1,000 3 columns to the left.
These rules never change no matter how big or small the number is.

19. Helsinki

20. Athens

I can find prime factors of any number up to 100.

A number under 100 is prime if it is not in the 2, 3, 5 or 7 times table.

To find the prime factors of 24, first find a prime number that 24 is divisible by.

The Prime factors of 24 can be written as $2 \times 2 \times 2 \times 3$
I can round any number to the nearest 10,000.

Rule: Between 1 and 4,999 rounds down, e.g. 12,568 rounded would round down to 10,000. 17,024 rounded would round up to 20,000.

I can identify the highest common factor (HCF) of two numbers.

To find the HCF you need to find out which the highest whole number in both numbers. For example:

HCF for 15 and 40 would be 5: $5 \times 3=15$; 5 x $8=40$

HCF for 9 and 4 would be $36: 9 \times 4=36$ and $4 \times 9=36$.

I can convert a number with up to three decimal places (3dp) into a fraction.

Remember place value with decimal numbers (1/10 th $=0.1 ; 1 / 100=0.01 ; 1 / 1,000$ $=0.001$).

So 0.123 would be 123/1,000;
0.45 would be 45/100
0.6 would be $6 / 10$

20a. Red Metro

Using a rule, I can recognise any multiple of 3

To recognize a multiple of 3 , add up all the digits and the total should be in the 3 times table.

45 -> $4+5=9$ so 45 is a multiple of 3
44 -> $4+4=8$ so 44 is not a multiple of 3
Using a rule, I can recognise any multiple of 9

To recognize a multiple of 9 , add up all the digits and the total should be 9.
You have to continue adding the digits until you are left with a single digit answer.
$99->9+9=18->1+8=9$
So 99 is a multiple of 9

Using a rule, I can recognise any multiple of 6

To recognize a multiple of 6 , you need to divide by 2 and then by 3 again. You are dividing by 6 's prime factors! If the answer is a whole number, it is a multiple of 6 .
$72 \div 2=36$
$36 \div 3=12$
The prime factors of 6 are 2×3

Using a rule, I can recognise any multiple of 4

To recognize a multiple of 4, you need to divide by 2 and then by 2 again. You are dividing by 4's prime factors! If the answer is a whole number, it is a multiple of 4 .
$88 \div 2=44$
$44 \div 2=22$
The prime factors of 4 are 2×2
Using a rule, I can recognise any multiple of 8

To recognize a multiple of 8, you need to divide by 2 , by 2 again and then by 2 again. You are dividing by 8 's prime factors! If the answer is a whole number, it is a multiple of 8.
$88 \div 2=44$
$44 \div 2=22$
$22 \div 2=11$
The prime factors of 8 are $2 \times 2 \times 2$

