12a. Blue Metro	
I can count in 10s from any number forward or backwards.	I know by heart all number bonds of multiples of 10 up to 100.
eg 54, 64, 74, 84, 94, 104	0 + 100 = 100 10 + 90 = 100
eg 77, 67, 57, 47, 37, 27, 17, 7	20 + 80 = 100 30 + 70 = 100 40 + 60 = 100 50 + 50 = 100 60 + 40 = 100 70 + 30 = 100 80 + 20 = 100 90 + 10 = 100 100 + 0 = 100
I can recognize any multiple of 2, 5 or 10.	I can find 1, 10 or 100 more or less from any 3-digit number.
Multiples of 2: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 Multiples of 5: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 Multiples of 10: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100	e.g. 1more than 234 is 235 1 less than 151 is 150 10 more than 436 is 446 10 less than 612 is 602 100 more than 520 is 620 100 less than 780 is 680

13. Prague		
I can double any number to double 20.	I can count forwards and backwards in multiples of 6.	
$1 \leftarrow 2 \qquad 11 \leftarrow 22 \\ 2 \leftarrow 4 \qquad 12 \leftarrow 24 \\ 3 \leftarrow 6 \qquad 13 \leftarrow 26 \\ 4 \leftarrow 8 \qquad 14 \leftarrow 28 \\ 5 \leftarrow 10 \qquad 15 \leftarrow 30 \\ 6 \leftarrow 12 \qquad 16 \leftarrow 32 \\ 7 \leftarrow 14 \qquad 17 \leftarrow 34 \\ 8 \leftarrow 16 \qquad 18 \leftarrow 36 \\ 9 \leftarrow 18 \qquad 19 \leftarrow 38 \\ 10 \leftarrow 20 \qquad 20 \leftarrow 40$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
I know by heart all multiplication factsfor 6 up to 6 x 12 $1 \times 6 = 6$ $6 \times 1 = 6$ $2 \times 6 = 12$ $6 \times 2 = 12$ $3 \times 6 = 18$ $6 \times 3 = 18$ $4 \times 6 = 24$ $6 \times 4 = 24$ $5 \times 6 = 30$ $6 \times 5 = 30$ $6 \times 6 = 36$ $6 \times 6 = 36$ $7 \times 6 = 42$ $6 \times 7 = 42$ $8 \times 6 = 48$ $6 \times 8 = 48$ $9 \times 6 = 54$ $6 \times 10 = 60$	I know by heart all division facts for 6 up to 72. $72 \div 6 = 12$ $66 \div 6 = 11$ $60 \div 6 = 10$ $54 \div 6 = 9$ $48 \div 6 = 8$ $42 \div 6 = 7$ $36 \div 6 = 6$ $30 \div 6 = 5$ $24 \div 6 = 4$ $18 \div 6 = 3$	
11 x 6 = 66 6 x 11 = 66 12 x 6 = 72 6 x 12 = 72	$12 \div 6 = 2$ $6 \div 6 = 1$ $0 \div 6 = 0$	

14. Warsaw			
I can count forwards and backwardsin multiples of 9.010899918902781367245635454545 x 9 = 45.7236812790189991080	I know by heart all multiplication facts for 9 up to 9 x 12. $1 \times 9 = 9$ $2 \times 9 = 18$ $3 \times 9 = 27$ $4 \times 9 = 36$ $5 \times 9 = 45$ $6 \times 9 = 54$ $7 \times 9 = 63$ $8 \times 9 = 72$ $9 \times 9 = 81$ $10 \times 9 = 90$ $11 \times 9 = 99$ $12 \times 9 = 108$ When the sum of the number's digits is divisible by 9. For example 81 is 8 + 1 = 9 so is in the 9 times table.		
I know by heart all division facts for 9 up to 108. $108 \div 9 = 12$ $99 \div 9 = 11$ $90 \div 9 = 10$ $81 \div 9 = 9$ $72 \div 9 = 8$ $63 \div 9 = 7$ $54 \div 9 = 6$ $45 \div 9 = 5$ $36 \div 9 = 4$ $27 \div 9 = 3$ $18 \div 9 = 2$ $9 \div 9 = 1$ $0 \div 9 = 0$	I can count forwards and backwards in multiples of 7. 0 84 7 77 14 70 21 63 28 56 35 59 42 42 49 35 56 28 63 21 70 14 77 7 84 0		
I know by heart all multiplication facts for 7 up to 7 x 12. $1 \times 7 = 7$ $2 \times 7 = 14$ $3 \times 7 = 21$ $4 \times 7 = 28$ $5 \times 7 = 35$ $6 \times 7 = 42$ $7 \times 7 = 49$ $8 \times 7 = 56$ $9 \times 7 = 63$ $10 \times 7 = 70$ $11 \times 7 = 77$ $12 \times 7 = 84$	I know by heart all division facts for 7 up to 84. $84 \div 7 = 12$ $77 \div 7 = 11$ $70 \div 7 = 10$ $63 \div 7 = 9$ $56 \div 7 = 8$ $49 \div 7 = 7$ $42 \div 7 = 6$ $35 \div 7 = 5$ $27 \div 7 = 4$ $21 \div 7 = 3$ $14 \div 7 = 2$ $7 \div 7 = 1$ $0 \div 7 = 0$		

15. Ams	terdam
I can count forwards and backwards in multiples of 11. 0 132 11 121 22 110 33 99 44 88 55 77 66 66 77 55 88 44 99 33 110 22 121 11 132 0	I know by heart all multiplication facts for 11 up to 11x 12. $0 \times 11 = 0$ $11 \times 0 = 0$ $1 \times 11 = 11$ $11 \times 1 = 11$ $2 \times 11 = 22$ $11 \times 2 = 22$ $3 \times 11 = 33$ $11 \times 3 = 33$ $4 \times 11 = 44$ $11 \times 4 = 44$ $5 \times 11 = 55$ $11 \times 5 = 55$ $6 \times 11 = 66$ $11 \times 6 = 66$ $7 \times 11 = 77$ $11 \times 7 = 77$ $8 \times 11 = 88$ $11 \times 8 = 88$ $9 \times 11 = 99$ $11 \times 9 = 99$ $10 \times 11 = 110$ $11 \times 10 = 110$ $11 \times 11 = 121$ $11 \times 11 = 121$ $12 \times 11 = 132$ $11 \times 12 = 132$
I know by heart all division facts for 11 up to 132. $132 \div 11 = 12$ $121 \div 11 = 11$ $110 \div 11 = 10$ $99 \div 11 = 9$ $88 \div 11 = 8$ $77 \div 11 = 7$ $66 \div 11 = 6$ $55 \div 11 = 5$ $44 \div 11 = 4$ $33 \div 11 = 3$ $22 \div 11 = 2$ $11 \div 11 = 1$ $0 \div 11 = 0$	l can count forwards and backwards in multiples of 12 to 12 x 12. 0 144 12 132 24 120 36 108 48 96 60 84 72 72 84 60 96 48 108 36 120 24 132 12 144 0
I know by heart all division facts for 12 to 144. $144 \div 12 = 12$ $132 \div 12 = 11$ $120 \div 12 = 10$ $108 \div 12 = 9$ $96 \div 12 = 8$ $84 \div 12 = 7$ $72 \div 12 = 6$ $60 \div 12 = 5$ $48 \div 12 = 3$ $24 \div 12 = 2$ $12 \div 12 = 1$	

16. Copenhagen		
I can recall all multiplication and division facts for all multiplication tables up to $12 \times 12 \text{ e.g.}$ $144 \div 12 = 12$ $0 \times 12 = 0$ $144 \div 12 = 12$ $1 \times 12 = 12$ $132 \div 12 = 11$ $2 \times 12 = 24$ $120 \div 12 = 10$ $3 \times 12 = 36$ $96 \div 12 = 8$ $4 \times 12 = 48$ $84 \div 12 = 7$ $5 \times 12 = 60$ $72 \div 12 = 6$ $6 \times 12 = 72$ $60 \div 12 = 5$ $7 \times 12 = 84$ $8 \div 12 = 4$ $8 \times 12 = 96$ $36 \div 12 = 3$ $9 \times 12 = 108$ $24 \div 12 = 2$ $10 \times 12 = 120$ $12 \div 12 = 1$ $11 \times 12 = 132$ $0 \div 12 = 0$	I can multiply 3 single digit numbers. The first two should be done mentally but multiplying by the third might need jottings. $3 \times 5 \times 7 = 105$ Don't forget that multiplication can be done in any order, so $5 \times 7 = 35$ $35 \times 3 =$ $[3 \times 30 = 90, 3 \times 5 = 15]$	
I can multiply and divide whole numbers and those involving decimals by 10 or 100 and explain the effect. Use a place value grid. Multiply by: 10 \bullet the whole number moves 1 column to the left, for example 10 x 1.63 = 16.3 100 \bullet the whole number moves 2 columns to the left, for example 100 x 1.63 = 163	I can identify all factor pairs of any number up to 100. A factor is a number that will go into another number without leaving a remainder. 2 is a factor of 10 because it goes in exactly 5 times. 3 is a factor of 60 because it goes into 60 without leaving a remainder.	
I can round any number to the nearest 10, 100 or 1,000. The rule is the same no matter which digits we are talking about. *If the digit after the one you are rounding is 0, 1, 2, 3 or 4 then the digit you are rounding stays the same. (E.g. 5639 rounded to the nearest 100 is 5600) *If the digit after the one you are rounding is 5, 6, 7, 8 or 9 then the digit you are rounding goes up by 1. (E.g. 5639 rounded to the nearest 1000 is 6000)		

17. Oslo				
			d backwards	I can count forwards and
in multipl	es of 1,(000.		backwards in multiples of 25.
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000	95,0 96,0 97,0 98,0 99,0 100	000 000 000		Look for the pattern which is repeated and regular. 0 25 125 550 50 150 575 75 175 600 100 200 625
l can cou	unt forw	ards and	d backwards	I can count forwards and
	•	actions of	and decimals	
0.01	0.1	$\frac{1}{10}$	$\frac{10}{10}$	negative numbers through zero.
0.02	0.09	$\frac{2}{10}$	9	The number system remains constant
0.03	0.08	$10 \\ 3$	$\overline{\frac{10}{8}}$	whether on the positive or negative side
		$\frac{3}{10}$	$\frac{8}{10}$	of 0. Look at the pattern. For example
0.04	0.07	$\frac{4}{10}$	$\frac{7}{10}$	
0.05	0.06	$\frac{5}{10}$	$\frac{\frac{10}{6}}{10}$	-5 -4 -3 -2 -1 01 2 3 4 5 6 7 8
0.06	0.05	10 6	10 5	6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
		$\overline{10}$	$\overline{10}$	
0.07	0.04	7	$\frac{4}{10}$	
0.08	0.03	$\frac{10}{8}$	10 3	
		$\frac{10}{9}$	$\frac{3}{10}$	
0.09 0.1	0.02 0.01	9 10 10 10 10	$ \frac{2}{10} \frac{1}{10} $	

18. Stockholm		
I can double any 2-digit number	I can half any 2-digit number.	
11 22 12 24 13 26 14 28 15 30 16 32 17 34 18 36 19 38 20 40	$12 \bullet 6$ Be thoughtful $14 \bullet 7$ when halving $16 \bullet 6$ odd numbers – $16 \bullet 6$ remember place $18 \bullet 9$ value. To half 36: $20 \bullet 10$ half of 30 is 15 $22 \bullet 11$ and half 6 is 3 so $24 \bullet 12$ half 36 is 18. $26 \bullet 13$ Half of 15 is 7.5. $28 \bullet 14$ (Half 14 is 7, half $30 \bullet 15$ of 1 is 0.5)	
I can double any number with up to 1 decimal place.4.48.86.412.88.817.610.420.812.424.814.629.216.232.44.89.6Remember place value and split the number up if it helps. For example 8.8: double 8 is 16; double 0.8 is 1.6 so double 8.8 is 17.6 when you add both parts together.	I can half any number with up to 1 decimal place. 4.4 2.2 6.4 3.2 8.8 4.4 10.4 5.2 12.4 6.2 14.6 7.3 16.2 8.1 4.8 2.4 Remember place value and split the number up if it helps. For example 8.8: half 8 is 4; half 0.8 is 0.4 so half 8.8 is 4.4 when you add both parts together.	
I can count forward and backwards in steps of powers of 10 for any given number up to 1,000,000. Any power of 10 means 10 or 10 ² (10x10=100), 10 ³ (10x10x10) = 1,000) etc. For example counting forwards and backwards in 1,000,000 (10 ⁶) 1,000,000 3,000,000 4,000,000 and so on.	I can multiply and divide whole numbers and those involving decimals by 10, 100 and 1,000 and explain the effect. Use place value grid!!! Dividing by 10 – whole number moves one column to the right (smaller number); by 100 – the whole number 2 columns to right; by 1,000 move by 3 columns. Multiplying by 10 – whole number moves 1 column to the left (bigger); by 100 two columns to the left; 1,000 3 columns to the left. These rules never change no matter how big or small the number is.	

19. Helsinki		
I know by heart all the squares of numbers between 1 and 12 and use the notation squared (2). $1^{2} - 1$ $2^{2} - 4$ $3^{2} - 9$ $4^{2} - 16$ $5^{2} - 25$ $6^{2} - 36$ $7^{2} - 49$ $8^{2} - 64$ $9^{2} - 81$ $10^{2} - 100$ $11^{2} - 121$	I know all squares of numbers of multiples of 10 to 100. 10^2 100 Remember place 20^2 400 value. For 30^2 900 example, 20x 20 40^2 1,600 broken down 50^2 2,500 would be: 60^2 3,600 2 x 2 = 4 70^2 4,900 4 x 10 = 40 80^2 6,400 40 x 10 = 400 90^2 8,100 100 ²	
12^2 144I can recognize and use cube numbers and use the notation for cubed (3).The first calculation should be done in your head, then jottings for the second multiplication $1^3 = 1 \times 1 \times 1 = 1$ 	I can read Roman Numerals up to 1,000. 0 = 20 = XX 200 = CC $1 = I 30 = XXX 300 = CCC$ $2 = II 40 = XL 400 = CD$ $3 = III 50 = L 500 = D$ $4 = IV 60 = LX 600 = DC$ $5 = V 70 = LXX 700 = DCC$ $6 = VI 80 = LXXX 800 = DCCC$ $7 = VII 90 = XC 900 = CM$ $8 = VIII 100 = C 1000 = M$ $9 = IX$ $10 = X$	
I know the definition of a prime number and can recognize all prime numbers to 19. A prime number has only two factors itself and 1. For example 3 is a prime because 3x1 or 1x3 are the only whole numbers that equal 3; 1 is NOT a prime number because it only has 1 factor; 2 is the only EVEN prime number. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20	I can classify any number up to 100 as prime or composite. Prime number is described in the previous target. A composite number is any number that has more than two factors. For example 4 has 3 factors: 1x4 and 2x2 therefore 4 is composite.	

20. Athens		
I can find prime factors of any number up to 100.	I can identify the highest common factor (HCF) of two numbers.	
A number under 100 is prime if it is not in the 2, 3, 5 or 7 times table.	To find the HCF you need to find out which the highest whole number in both numbers. For example:	
To find the prime factors of 24, first find a prime number that 24 is divisible by.	HCF for 15 and 40 would be 5: $5 \times 3 = 15$; $5 \times 8 = 40$	
$ \begin{array}{c} 24 \\ 12 \\ 4 \\ 3 \\ 4 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 3 \\ 4 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	HCF for 9 and 4 would be 36: 9 x 4 = 36 and 4 x 9 = 36.	
The Prime factors of 24 can be written as 2x2x2x3		
I can round any number to the nearest 10,000. Rule: Between 1 and 4,999 rounds down, e.g. 12,568 rounded would round down to 10,000. 17,024 rounded would round up to 20,000.	I can convert a number with up to three decimal places (3dp) into a fraction. Remember place value with decimal numbers (1/10 th = 0.1; 1/100 = 0.01; 1/1,000 = 0.001). So 0.123 would be 123/1,000; 0.45 would be 45/100 0.6 would be 6/10	
I can multiply any multiple of 10 by a single digit number.		
A multiple of 10 is any number that ends in a 0.		
E.g. 6 x 30. To do this first do 6 x 3 = 18 then multiply the answer by 10 so $18 \times 10 = 180$.		

20a. Red Metro		
Using a rule, I can recognise any multiple of 3	Using a rule, I can recognise any multiple of 4	
To recognize a multiple of 3, add up all the digits and the total should be in the 3 times table.	To recognize a multiple of 4, you need to divide by 2 and then by 2 again. You are dividing by 4's prime factors! If the answer is a whole number, it is a multiple of 4.	
45 -> 4+5 = 9 so 45 is a multiple of 3	$88 \div 2 = 44$	
44 -> 4+4 = 8 so 44 is not a multiple of 3	$44 \div 2 = 22$	
	The prime factors of 4 are 2x2	
Using a rule, I can recognise any multiple of 9	Using a rule, I can recognise any multiple of 8	
To recognize a multiple of 9, add up all the digits and the total should be 9. You have to continue adding the digits until you are left with a single digit answer.	To recognize a multiple of 8, you need to divide by 2, by 2 again and then by 2 again. You are dividing by 8's prime factors! If the answer is a whole number, it is a multiple of 8.	
99 -> 9+9 = 18 -> 1+8 = 9	$88 \div 2 = 44$ $44 \div 2 = 22$	
So 99 is a multiple of 9	$22 \div 2 = 11$	
	The prime factors of 8 are 2x2x2	
Using a rule, I can recognise any multiple of 6		
To recognize a multiple of 6, you need to divide by 2 and then by 3 again. You are dividing by 6's prime factors! If the answer is a whole number, it is a multiple of 6.		
$72 \div 2 = 36$ $36 \div 3 = 12$		
The prime factors of 6 are 2x3		